
Programmable Arbitrary Precision Calculator for Windows
Copyright (C) 1993, 1994, 1995 by S. Jason Olasky,
All rights reserved.

S. Jason Olasky
874 New Mark Esplanade
Rockville, MD 20850
301-294-9419
Compuserve [70471,2501]

Features
Primitives
General Notes
Standard Mathematical Functions
Stack and Register Operations
Financial Functions
Calendar and Time Functions
Support for Hex, Octal, and Binary Numbers
Miscellaneous Operations
Programming
Financial and Date Calculators
Options Dialog
Stack and Register Windows
INI File
Registration

Features
Arbitrary precision, up to 1075 digits
Arbitrary number of decimal places with rounding
Fully editable input
Commas allowed in input
Recall of previous input lines
Error checking
Virtual stack and memory register array
Programmable   
Use an editor of your choice
Standard financial functions
Date functions based on Julian Day Number
Hexadecimal, Octal, and Binary conversions

Primitives
OPCODE FUNCTION

+ Add
- Subtract
* Multiply
/ Divide
^ Power
% PerCent
\ Reciprocal

ABS AbsoluteValue
ACOS ArcCosine
ASIN ArcSine
ATAN ArcTangent

BE Toggle BE
BIN ShowBinary

CD Toggle CD
CF Compounding Frequency
CHS ChangeSign
CLST ClearStack
CLRF ClearFinReg
CLRG ClearRegisters
CLS ClearScreen
COS Cosine

DATE Date
DEG SetDegrees
D>R ConvertDegreesToRadians
DOW DayOfTheWeek
DROP Drop
DUP Dup

E e
EXP10 Exp10
EXPE ExpE

FACT Factorial
FIX FixNotation
FRACT FractionPart
FV Future Value

HEX ShowHex
HMS HMS
HRS HRS

I Interest Rate
IND SetIndirectFlag
INT IntegerPart

JDN Julian Day Number

LOG Log
LN Ln

MOD Modulo

N N

OCT ShowOctal
OVER Over

PF Payment Frequency
PI Pi
PICK Pick
PMT Payment
PREC SetPrecision
PV Present Value

RAD SetRadians
R>D ConvertRadiansToDegrees
RCL Recall
RCLM RecallMultiple
ROLL Roll
ROT Rot

SCI SciNotation
SHOWS ShowStack
SIN Sine
SQR Square
SQRT SquareRoot
STO Store
STOM StoreMultiple
SWAP Swap

TAN Tangent

VIEW ViewReg

XCH Exchange

General Notes
This is a programmable arbitrary precision RPN (reverse polish notation) line oriented
calculator, which includes financial and date functions in addition to many standard
mathematical functions. The extended precision math routines are derived from the Bigcalc
extended precision calculator written by Judson D. McClendon. Virtual arrays are used for the
stack and memory registers, so there are no effective limits on the stack size or number of
registers. One register requires slightly more than 1K, so 1.1MB of disk storage will suffice
for 1000 registers.

This calculator is programmable, using a notation that is a hybrid between that used in the
HP-41 calculator and FORTH. All opcodes are case insensitive. One character opcodes, i.e. +,
-, *, /, \, ^ , % do not need to be separated from the previous number or operator by a
space, but all other opcodes do. Thus 123 3 4+^ is valid but 123 3STO will be flagged as an
error. Numbers may be preceded by a + or - sign.

The stack is based on the FORTH model rather than the HP calculator model; that is, the
stack expands and contracts as numbers are entered or result from operations upon
numbers already on the stack. As a general rule, any operation upon one or more numbers
removes those numbers from the stack. To re-utilize a number, additional copies may be
added to the stack with stack operations or the number may be stored in a register. Certain
stack operations refer to a number on the stack relative to the top of the stack. Thus the
topmost number is stack[0], the nextmost stack[1], etc. See the pick and roll operators for
examples.

The prompt shows the number of elements on the stack. Thus the prompt 2> indicates that
there are two numbers on the stack. If the stack is non-empty, the number on top of the
stack will be displayed before the prompt. The stack is implemented as a virtual array, so
there are no limits on the number of elements on the stack. Some stack operations allow
indirect references, that is the number on the stack is used as an index to a register the
contents of which will be utilized for the operation.

There are an unlimited number of memory registers available, as the memory registers are
stored as a virtual array in a disk file. See "Virtual Arrays in C" by Mark Tichenor, published in
the May 1988 issue of Dr. Dobb's Journal. This means    that some register operations may be
slowed due to the need for disk access; however, a ramdisk may be used by setting an
environment variable named TEMP to the RAMDISK drive. Some operations that use a block
control word are limited to a maximum of 1000 registers (000-999);

The financial functions utilize the first ten registers, either to save financial variables or for
scratch registers, so if you want to store data that won't be overwritten by the financial
functions, you will need to use higher numbered registers.

Registers are indexed using standard C array notation, so the first register is reg[0] the
second reg[1], etc. The array index is retrieved from the stack, so to store the number on
top of the stack in register 0, the command would be 0 STO, with the result that the size of
the stack would be reduced by one. To retrieve this number, the command would be 0 RCL,
and the number that was stored in reg[0] would then be the topmost number on the stack,
which has increased in size by 1.

The trigonometric functions can operate with angles expressed as either degrees or radians.
An indicator on the status bar indicates which mode has been set. The default mode is to
express angles in radians. To set the angles mode to degrees, enter deg, and to set the
angles mode to radians, enter rad. Degrees may be converted to radians and vice-versa
using the D>R and R>D operators.

The default precision is 20 digits, and the default number of decimal places for fixed
notation is 2. The precision and number of decimal places may be changed using the prec,
fix, and sci operations. Increasing the precision will slow down calculations. Numbers may be
entered using either fixed or scientific notation, eg 123,456.789 or 1.23456789E5, and
commas may be used.

The screen buffer will hold between 500 and 9999 lines, depending on the option set. To go
to the top of the buffer, use CTRL-Home and to go to the bottom of the buffer use CTRL-End.
The arrow, pg-up, and pg-down keys work as expected, except that the left and right arrow
keys only apply to the current input line. To recall previous entry lines, use the CTRL-uparrow
and CTRL-downarrow.

Standard Mathematical Functions
The following descriptions of the operations implemented include stack diagrams showing
the effect of the operation on the stack. In these diagrams the topmost element of the stack
is on the right, the elements on the stack are numbered to indicate the order they were
placed on the stack, and the result of the operation is shown.

+ Replaces the top two numbers on the stack with their sum.
n1 n2 --- n1+n2

- Replaces the top two numbers on the stack with their difference .
n1 n2 --- n1-n2

* Replaces the top two numbers on the stack with their product
n1 n2 --- n1*n2

/ Replaces the top two numbers on the stack with the result of dividing the
second from the top by the topmost.
n1 n2 --- n1/n2

^ Replaces the top two numbers on the stack with the result of raising the
second from the top to the power of the topmost.
n1 n2 --- n1^n2

% Replaces the top two numbers on the stack with the result of multiplying the
second from the top by the topmost and then dividing by 100.
n1 n2 --- n1*n2/100.

Note: To add or subtract a percentage to a number, first duplicate the number
then calculate the percentage and add or subtract it. Thus to add 15% to a
number use the sequence of operations: dup 15%+

\ Replaces the top number on the stack with its inverse.
n1 --- 1/n1

ABS Replaces the top number on the stack with its absolute value.
n1 --- abs(n1)

SQRT Replaces the top number on the stack with its square root.
n1 --- sqrt(n1)

SQR Replaces the top number on the stack with its square.
n1 --- sqr(n1)

FACT Replaces the top number on the stack with its factorial.
n1 --- n1!

INT Replaces the top number on the stack with its integer part.
n1 --- int(n1)

FRACT Replaces the top number on the stack with its fractional part.
n1 --- fract(n1)

MOD Replaces the top two numbers on the stack with the second from the top
modulo the topmost.
n1 n2 --- mod(n1,n2)

SIN Replaces the top number on the stack with its sine.
n1 --- sin(n1)

ASIN Replaces the top number on the stack with its arcsine.
n1 --- arcsin(n1)

COS Replaces the top number on the stack with its cosine.
n1 --- cos(n1)

ACOS Replaces the top number on the stack with its arccosine.
n1 --- arccos(n1)

TAN Replaces the top number on the stack with its tangent.
n1 --- tan(n1)

ATAN Replaces the top number on the stack with its arctangent.
n1 --- arctan(n1)

LOG Replaces the top number on the stack with its logarithm to the base 10.
n1 --- log10(n1)

EXP10 Replaces the top number on the stack with 10 raised to the number.
n1 --- 10^n1

LN Replaces the top number on the stack with its natural logarithm.
n1 --- ln(n1)

EXPE Replaces the top number on the stack with e raised to the number.
n1 --- e^n1

PI Adds pi to the stack.
--- pi

E Adds e to the stack.
--- e

CHS Changes the sign of the top number on the stack. n1 --- -n1

SCI The integer part of the number on top of the stack will be used to set the
number of decimal places and numbers will be displayed in scientific notation
based on the precision and number of decimal places set.

n1 --.

FIX The integer part of the number on top of the stack will be used to set the
number of decimal places and numbers will be displayed as fixed numbers
based on the precision and number of decimal places set. 0 fix means don't
display a decimal point or any fractional part of the number.
n1 --

PREC The integer part of the number on top of the stack will be used to set the
precision of succeeding calculations. It will not affect results already derived.
Numbers will be displayed in fixed or scientific format as previously set. If
scientific notation is being used, the precision will not be lower than the
number of decimal places plus 3.
n1 ---

Stack and Register Operations
CLST Clears the stack. Clearing the stack sets the stack pointer to 0..

n1 ... nm ---

CLRG Clears all currently allocated registers to zero. Initially there are ten registers.
Whenever a register is referenced beyond the currently allocated registers,
additional virtual registers are allocated up to and including the new register.
Clearing the registers does not reduce the number of registers that have been
allocated. Does not affect the stack.

STO Uses the integer part of the number on top of the stack as an index, and
stores the nextmost number on the stack in the indexed register. If you think
of the index number as part of the sto command, the effect is really to store
the number on top of the stack, but from the point of view of the stack, the
index has briefly been added to the stack. If STO is directly followed by one of
the operators + - * / % ^, the operation will be performed using the next to
last stack entry and the contents of the register, e.g. 1 3 STO+ will increment
the contents of register 3 by 1, 10 3 STO/ will divide the contents of register 3
by 10. If a STO operation is preceded by the keyword IND, the contents of the
indexed register will be used as an indirect register address.
n1 n2 ---

RCL Uses the integer part of the number on top of the stack as an index, and
recalls the number in the indexed register to the stack. Note that unlike
storing a number which removes the number from the stack, recalling a
number leaves it in the register. Has the effect of replacing the number on top
of the stack by the contents of the register indexed by that number. If a RCL
operation is preceded by the keyword IND, the contents of the indexed
register will be used as an indirect register address.
n1 --- n2

STOM Stores the contents of the stack based on the block control word. The block
control word is retrieved from the register on top of the stack. Starts with the
top element on the stack not counting the block control word pointer and
stores it in the first register in the block and increments until done. At the end,
numbers will be stored in the reverse order they were entered on stack.
n1 n2 ... nm r ---

RCLM Recalls the contents of a block of registers to the stack based on the block
control word. The block control word is retrieved from the register on top of
the stack. Starts with the last register in the block and decrements to restore
the stack in the same order it was originally.
r --- n1 n2 ... nm

DUP Adds a copy of the number on top of the stack to the stack.
n1 -- n1 n1

DROP Deletes the number on top of the stack from the stack.
n1 ---

SWAP Swaps the two numbers on top of the stack.
n1 n2 --- n2 n1

ROT Rotates the third from the top of the stack to the top of the stack. Equivalent
to 2 Roll.
n1 n2 n3 --- n2 n3 n1

OVER Adds a copy of the second number from the top to the stack.
n1 n2 -- n1 n2 n1

PICK Uses the integer part of the topmost number on the stack to index a number
on the stack. A copy of the indexed number is added to the stack. Like STO,
the index number is really part of the pick command, but from the point of
view of the stack, the index is briefly the top of stack element. Indexing for
PICK is zero-based, with the top of the stack (index omitted) being 0, etc.
Example: 3 PICK
n1 n2 n3 n4 3 --- n1 n2 n3 n4 n1

ROLL Uses the integer part of the topmost number on the stack to index a number
on the stack. The indexed number is removed from the stack and moved to
the top of the stack, Like STO, the index number is really part of the pick
command, but from the point of view of the stack, the index is briefly the top
of stack element. Indexing for ROLL is zero-based, with the top of the stack
(index omitted) being 0, etc.
Example: 3 ROLL
n1 n2 n3 n4 3 --- n2 n3 n4 n1

XCH Exchanges the number on the stack below the index with the contents of the
indexed register.
Example: 3 XCH
n1 3 -- n2 where n2 was the contents of register 3 and register 3 now contains
n1.

Financial Functions
The financial functions, N, I, PV, PMT, and FV are those first implemented in the HP-92, as
modified for the HP-41 in the PPC ROM. A full explanation is provided in the PPC ROM User's
Manual (1981), from which the algorithm was derived and the examples taken, as well as in
many standard references.

The rule for financial calculations using these functions is that money paid out is considered
negative and money received is considered positive in sign.

There are five financial variables. N (number of periods), I (interest rate), PV (present value),
PMT (payment), and FV (future value), and given any three of them, the other two can be
calculated. This calculator includes two additional parameters, CF, compounding frequency
(number of times the interest rate is compounded during the period for which the interest
rate is I%), and PF, payment frequency (number of payment periods during the period for
which the interest rate is I%). These additional parameters simplify the solution of some
complex financial problems. In addition, there are toggles for beginning of period/end of
period payment and continuous/discrete compounding.

The financial functions either store a number in a register (N - 1, I - 2, PV - 3, PMT - 4, FV - 5)
or calculate that variable based on the other numbers entered, depending on whether the
data entry flag is set. This flag is automatically set whenever a number is entered or
calculated and turned off when a financial operation is performed. See the examples for
details. A financial calculator is provided to simplify use of the financial functions.

N Either stores the number of periods in register 1, or calculates N based on two
other values.
n1 --- --- n1

I Either stores the interest rate in register 2, or calculates I.
n1 --- --- n1

PV Either stores the present value in register 3, or calculates PV.
n1 --- --- n1

PMT Either stores the payment in register 4, or calculates PMT.
n1 --- --- n1

FV Either stores the future value in register 5, or calculates FV.
n1 --- --- n1

CF Sets the compounding frequency.
n1 --

PF Sets the payment frequency.
n1 --

BE Toggles the beginning/end payment flag. Does not affect the stack.

CD Toggles the continuous/discrete payment flag. Does not affect the stack.

CLRF Clears registers 1 through 5 used for financial variables, sets CF=PF=1, sets

BE to E and CD to D.

Examples

Monthly payment.

A couple purchases a $50,000 house, borrowing $40,000 at 8.5% for 30 years less one
month. What is their monthly payment.

clrf 40,000 pv 8.5 12/ i 30 12* 1- n pmt
result is PMT = $307.75

Internal rate of return.

The couple above then sold their house 18 months later, netting $25,000. At what annual
interest rate would they have had to invest their original $10,000 and $307.75 monthly
payments to obtain $25,000.

clrf 18 n 25,000 fv -10,000 pv -307.75 pmt i 12*
result is I = 38.51%

Simple interest.

Find the annual simple interest rate (%i) for an $800 loan to be repaid at the end of one year
with a single payment of $896.

clrf 1 n -800 pv 896 fv i
result is APR = 12.0%

Compound interest

Find the future value of an $800 loan after one year at a nominal rate of 12% compounded
monthly. No payments are specified, so the payment frequency is set equal to the
compounding frequency.

clrf 12 n 12 dup cf pf 12 i -800 pv fv
result is FV = 901.46

Periodic payment.

Find the monthly end of period payment required to fully amortize the loan in the preceding
example. A fully amortized loan has a future value of zero. Use data retained from preceding
example.

0 fv pmt
result is PMT = $71.08

Conventional mortgage.

Find the number of monthly payments necessary to fully amortize a loan of $100,000 at a
nominal rate of 13.25% compounded monthly, if end of period payments of $1,125.75 are
made.

clrf 12 dup cf pf 13.25 i 100,000 pv -1,125.75 pmt n
result is N = 360.10

Final payment.

Using the same data as in the preceding example, find the amount of the final payment if n
is changed to 360. The final payment is equal to the regular payment plus any balance
remaining (FV) at the end of the last period.

360.0 n fv 4 rcl+
result is final PMT = $1,234.62

Balloon payment.

On long term loans, small changes in the periodic payments can result in large changes in
the future value. If the monthly payment in the preceding example is rounded down to
$1,125 what is the additional balloon payment due with the final payment?

-1,125 pmt fv
result is balloon payment of $3,579.99

Canadian mortgage.

Find the monthly end-of-period payment necessary to fully amortize a 25 year $85,000 loan
at 11% compounded semiannually.

clrf 2 cf 12 pf 25 12* n 11 i 85,000 pv pmt
result is PMT=818.15

European mortgage.

The "effective annual rate" (EAR) is used in some European countries instead of the nominal
annual rate commonly used in the US and Canada. For a 30 year $90,000 mortgage at 14%
EAR compute the monthly end-of- period payments, noting that when using an EAR, the
compounding frequency is set to 1.

clrf 12 pf 360 n 14 i 90,000 pv pmt
result is PMT=$1,007.88

Bi-weekly savings.

Compute the future value of bi-weekly savings of $100 for three years at a nominal annual
rate of 5.5% compounded daily. Note that it is necessary to toggle the BE flag to beginning
of period.

clrf be 365 cf 26 dup pf 3* n 5.5 i -100 pmt fv

result is FV=$8,489.32

Present value of an annuity.

What is the present value of $500 to be received at the beginning of each quarter over a 10
year period if money is being discounted at a 10% nominal annual rate compounded
monthly. Note that it is necessary to toggle the BE flag.

clrf be 12 cf 4 dup pf 10* n 10 i 500 pmt pv
result is PV=$12,822.64

Balloon payment.

Compute the monthly end-of-period payment on a 3 year $20,000 loan at 15% nominal
annual rate compounded monthly, with a $10,000 balloon payment due at the end of the
37th period. Note that the balloon payment must be discounted one period to make it
coincide with the last regular payment.

clrf 12 dup dup cf pf 3* n 15 i 20,000 pv pmt
note: at this point the effective monthly interest rate as a decimal fraction is in
register 6; throw away the number on the stack (monthly payment without the
balloon) and continue as follows:
drop -10,000 6 rcl 1+ / fv pmt
result is PMT=474.39

Effective rate using a 365/360 basis.

Compute the effective annual rate (%APR) for a nominal annual rate of 12% compounded on
a 365/350 basis.

clrf 3 fix 365 dup n cf 360 pf 12 i -100 pv fv 3 rcl +
result is APR=12.935%

Mortgage with points.

What is the true APR of a 30 year, $75,000 loan at a nominal rate of 13.25% compounded
monthly, with monthly end-of-period payments of $844.33 if 3 points are charged? The PV
must be reduced by the dollar value of the points to establish an effective PV. Because the
payments remain the same, the true APR will be higher than the nominal rate.

clrf 12 dup dup cf pf 30* n 75,000 dup 3% - pv -844.33 pmt i
result is APR=13.69%

Equivalent payments.

Find the equivalent monthly payment required to amortize a 20 year $40,000 loan at 10.5%
nominal annual rate compounded monthly, with ten annual payments of $5,029.71
remaining. Compute the PV of the remaining annual payments then change n and PF to a
monthly basis and compute the equivalent monthly payment.

clrf 12 cf 10 n 10.5 i -5,029.71 pmt pv

this calculates the PV of remaining payments which is $29,595.88
12 dup pf 10* n pmt
result is monthly PMT=$399.35

Perpetuity with continuous compounding.

If you can purchase a single payment annuity with an initial investment of $60,000 that will
be invested at a 15% nominal annual rate compounded continuously, what is the maximum
monthly return you can receive without reducing the principal. If the interest rate is constant
and the principal is not disturbed the payments can go on indefinitely. Note that the term n
of a perpetuity is immaterial and can be set to any non-zero value.

clrf cd 12 dup pf n 15 i 60,000 dup fv chs pv pmt
result is PMT=$754.71

Calendar and Time Functions
The calendar functions JDN and Date are inverses. JDN computes the Julian Day Number for
a given calendar date and Date converts a JDN to a calendar date. The valid range for dates
is from March 1 of the year 0 CE (Common Era, also known as AD) to sometime in the far
future. All dates are assumed to follow the Gregorian calendar, which was originally devised
in 1582, adopted in 1752 by the British Empire, including the then American colonies, and as
late as 1927 for Turkey. It is possible to use a somewhat more complicated algorithm to allow
for dates in either the Gregorian or the Julian calendars, and including dates BCE (Before the
Common Era, also known as BC) but this program does not do so.

The Julian Day Number should not be confused with the Julian Calendar. The Julian Day
Number is the number of whole days that have elapsed since a certain reference time in the
past. The JDN is widely used in astronomy and elsewhere in calculations involving dates. The
reference time is January 1, 4713 BCE, Julian Calendar, at noon.

It should be noted that the day of the week corresponding to a given date can be easily
calculated given the JDN. The day of the week is (JDN + 1) MOD 7, where 0 = Sunday, 1 =
Monday, etc.

A Date Calculator is provided to simplify use of the calendar functions.

JDN Converts a calendar date in the form YYYY.MMDD to the corresponding JDN.
n1 --- n1

DOW Displays the day of the week corresponding to the julian day number on the
stack.
n1 ---

DATE Converts a JDN to a calendar date in the form YYYY.MMDD
n1 --- n2

Examples

The attack on Pearl Harbor occured on December 7, 1941. What day of the week was it?

1941.1207 jdn dow
result is Sunday

What day of the year is July 4, 1993?

1993.0704 jdn 1992.1231 jdn -
result is July 4, 1993 is the 185th day of the year

What day is 90 days after July 4, 1993?

4 fix 1993.0704 jdn 90+ date
result is 1993.1002 or October 2

The time functions HMS and HRS allow converting between times expressed as decimal
numbers and times expressed as hours, minutes, seconds. The time functions have precision
only to the hundredth of a second.

HMS Converts time expressed as a decimal number H.DDDDDD to H.MMSSCC,
where H is hours, DDDDDD is some fraction of an hour, MM is minutes, SS is
seconds, and CC is hundredths of a second. Result is rounded to CC.
H.DDDDDDDD --- H.MMSSCC

HRS Converts a time expressed as H.MMSSCC to H.DDDDDD
H.MMSSCC --- H.DDDDDD

Support for Hex, Octal, and Binary Numbers
PAPCW is not a programmer's calculator, but limited support is provided for hexadecimal,
octal, and binary numbers. Numbers may be displayed in hexadecimal, octal, or binary by
using the HEX, OCT, or BIN keywords. Only the integer parts of the numbers will be used.
Hexadecimal, octal, and binary integers are entered using the prefix 0x, 0o, or 0b,
respectively, eg 0xABC, 0o5703 or 0b11001. The base conversion code uses long doubles
(which have 64 bit mantissas) as an intermediate form, so the base conversions are limited
to binary integers of 64 or fewer bits (16 hexadecimal digits).

Miscellaneous Operations
CLS Clears the screen. Does not affect the stack.

VIEW Displays selected registers based on the block control word bbb.eeeii where
bbb is the first register to view, eee is the last register to view, and ii is the
increment. The block control word is retrieved from the register on top of the
stack.
r ---

Note: Registers may be continuosly monitored by using the view registers
menu item.

SHOWS Displays the stack from top to bottom. the stack is not affected.
Note: The stack may be continuously monitored by using the view stack menu
item.

Programming
Programs may be written using any editor and then loaded and executed. The default editor
is NOTEPAD. Several sample programs are provided, including a mortgage amortization
schedule, a linear regression program, a root finder, and a conversions program. A program
may be automatically loaded and run by running PAPCW with the program name as an
argument. Execution will begin with the first statement in the program.

Unless stated otherwise, programming operators can not be used interactively, but only
within programs. A semicolon is used to begin a comment. Once a semicolon has been
parsed, the rest of the line is skipped. For debugging, a single-step option is provided. While
single step is enabled, PAPC will pause after each program line is executed, and a dialog
message will provide you with options to step, quit which will return you to interactive mode,
stop which will put your programm in a stopped state, or display the stack or registers.

LOAD Loads the program(s) in a file. If you need to use a path in the filename,
enclose the name in quotes, eg load "c:\xyz\progname" .The filename may be
any legal DOS filename, although I have used a filetype of PRG in the samples.
A file may contain multiple programs. There are no particular formatting
requirements, but putting one operation on a line may be helpful for
debugging. A program is terminated by an END statement. If you don't include
an END statement, one will be appended when the file is loaded. The load
command may be executed in interactive mode. Load statements in a
program file will be executed immediately, as shown in the sample LOADALL
program. Once a program has been loaded, it may be executed by saying XEQ
progname where progname is the label of the entrypoint, or just by entering
the name of the entrypoint. Example: LOAD xyz. Load may be invoked from
the menu or the toolbar.

CAT Displays a catalog of all labels that have been loaded. May be executed in
interactive mode. CAT in a program file will be executed immediately.

CLP Clears a program and deletes all labels that are in the program from the
catalog. May be executed in interactive mode. CLP statements in a program
file will be executed immediately. Example: CLP xyz

CLCAT Clears all programs from the catalog. May only be executed in interactive
mode.

LBL Defines a label and enters it in the catalog. Examples: LBL a, LBL
ThisIsAVeryLongLabel, LBL 01

END Defines the end of a program, and functions like a RTN.

PUTS Puts a string to the console
Example: PUTS "This is a string to put to the console\n".
Note that unlike the C function puts (), a newline is not automatically
appended. Use \n    or \r for a newline, \t for tab. Set tabs with TABSET,   
Example: 10 tabset PUTS    "\tTAB1\tTAB2\tTAB3\n"
The default tab setting is 5.

PROMPT Puts a string to the console and then gets a line of input which is parsed and
executed. If a NULL line is entered (ie, just a <CR>) the next instruction is
executed, otherwise the next line is skipped. The reason for this is to provide a
mechanism to escape from a data entry loop.

Example:
LBL DATAENTRY PROMPT "Enter a number: "
GTO NEXT ; only if a number wasn't entered .
; data entry processing
GTO DATAENTRY
LBL NEXT ; continue

XEQ Calls a program or subroutine, the next instruction in the calling program will
be executed when a RTN or END instruction is executed. May be used in
interactive mode to execute a program. Ten levels of subroutines are allowed.
XEQ is not required for a previously defined label (backward reference), which
will be resolved without it, but is necessary for a label that has not yet been
defined (forward reference).

Examples:

interactive XEQ myprogram or myprogram
program XEQ subxyz ...

GTO Transfers control to a LBL

Example: GTO xyz

RTN Returns from a subroutine call, or to interactive mode if the program was
invoked with an initial parameter

JMP JMP takes the number on top of the stack, or the contents of a register if IND is
used, adds that to the program instruction counter and then transfers to that
instruction. JMP may be used to implement a simple case mechanism.

Example:

LBL test2
PROMPT "Enter a number 1, 2, or 3, or CR to exit: " ; next line executed if just
a CR is entered
GTO done ; here if a number was entered
1 < GTO error
3 > GTO error
JMP
GTO one
GTO two
GTO three

STOP Returns immediately to interactive mode. The program can be resumed where
it left off using RUN.

RUN Resume the program where it left off. Can only be used from interactive mode.

PAUSE Pauses program and throws up the debugging dialog

ISG Increment and skip if greater. Uses a block control word bbb.eeeii to control
program flow. The block control word is retrieved from the register on top of
the stack. ii is added to bbb, if the result is greater than eee, the next
instruction is skipped. The updated block is stored back in the same register.

DSE Decrement and skip if less than or equal. Uses a block control word bbb.eeeii
to control program flow. The block control word is retrieved from the register
on top of the stack. ii is added to bbb, if the result is equal to or less than than
eee, the next instruction is skipped. The updated block is stored back in the
same register.

PUTSTACK Puts the number on the stack to the console using the field width (fixed mode
only).   

WIDTH Set field width. A field width of 0 indicates no fixed field width (like default
interactive mode).

== Compares the second number on the stack to the number on top of the stack,
which is dropped, If the numbers are equal, the next instruction is executed,
otherwise it is skipped (DO IF TRUE rule).

!= Compares the second number on the stack to the number on top of the stack,
which is dropped, If the numbers are not equal, the next instruction is
executed, otherwise it is skipped (DO IF TRUE rule).

> Compares the second number on the stack to the number on top of the stack,
which is dropped, If the number is > than the comparison number, the next
instruction is executed, otherwise it is skipped (DO IF TRUE rule).

>= Compares the second number on the stack to the number on top of the stack,
which is dropped, If the number is >= than the comparison number, the next
instruction is executed, otherwise it is skipped (DO IF TRUE rule).

< Compares the second number on the stack to the number on top of the stack,
which is dropped, If the number is < than the comparison number, the next
instruction is executed, otherwise it is skipped (DO IF TRUE rule).

<= Compares the second number on the stack to the number on top of the stack,
which is dropped, If the number is <= than the comparison number, the next
instruction is executed, otherwise it is skipped (DO IF TRUE rule).

Flag operations

There are ten user flags 0 through 9 that can be used in programs. Flags are indexed by a
number on the stack, or indirectly by the contents of a register number.

FS Set a flag. Examples: 3 FS, 3 IND FS

FC Clear a flag. FS? Test whether a flag is set, if so execute the next instruction,
otherwise skip over it (DO IF TRUE).

FC? Test whether a flag is clear, if so execute the next instruction, otherwise skip
over it (DO IF TRUE).

FS?C Test whether a flag is set and then clear it, if the flag was set execute the next
instruction, otherwise skip over it (DO IF TRUE)

FC?C Test whether a flag is clear and then clear it, if the flag was clear execute the
next instruction, otherwise skip over it (DO IF TRUE)

Financial and Date Calculators
Calculator dialogs are provided to facilitate data entry for the financial and date functions.
For the financial registers, operators as well as numbers can be entered and will be
interpreted. The date calculator will put the calculated date in the clipboard. The default for
the calendar option uses the PC Magazine utility Wincmd to invoke the Windows calendar
and enter the date from the clipboard. If you have a calendar program that can accept a
date from the keyboard, you can substitute it for calendar.exe.

Options Dialog
The options dialog allows you to enter the default directory for your PAPCW programs, the
program to be used for editing programs, the calendar to be used by the date calculator,
and the size of the scroll buffer (minimum of 500, maximum of 9999 lines). The default for
the editor uses the PC Magazine Wincmd utility to invoke the windows notepad with a mask
for PRG files. The default for the calendar uses the Wincmd utility to invoke the windows
calendar with the date that the date calculator has placed in the clipboard.

Stack and Register Windows
There are menu entries available for opening and closing windows to watch the stack and
registers. If these windows are open,    there will be respectively S and R indicators on the
status bar. Clicking on the S or R will bring the stack or register window to the top if that
window was hidden by another window.

 INI File
PAPCW maintains an INI file in the Windows directory which allows PAPCW to keep track of
window positions and program options.

Registration
This program (The Programmable Arbitrary Precision RPN Calculator for Windows) is released
as shareware. If you like it and plan to use it regularly, please send $20 to: S. Jason Olasky,
874 New Mark Esplanade, Rockville, MD 20850. The source code is available for an
additional $20.

The programmable arbitrary precision rpn calculator for windows and all accompanying
materials are provided "as is" without warranty of any kind. The entire risk of using the
programmable arbitrary precision rpn calculator is assumed by you. S. Jason Olasky makes
no warranty of any kind, express or implied, including but not limited to any warranties of
merchantability and fitness for a particular purpose. IN NO EVENT WILL S. JASON OLASKY BE
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO DAMAGES FOR
LOSS OF BUSINESS PROFITS, LOSS OF SAVINGS, BUSINESS INTERRUPTION, AND THE LIKE)
ARISING OUT OF YOUR USE OR INABILITY TO USE THE PROGRAM. By using the
programmable arbitrary precision rpn calculator for windows, you agree to the above
limitations.

Portions of this code were derived from Bigcalc by Judson D. McClendon, Parser by Lloyd
Zusman, and Varray by Mark Tichenor.

Notifications of bugs, suggested improvements, or comments in general are welcome.

